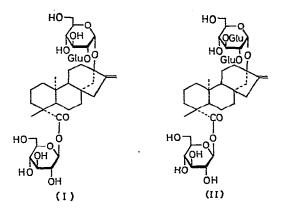
CHROM. 11,225

Note

High-performance liquid chromatographic determination of Stevia components on a hydrophilic packed column


YOHEI HASHIMOTO and MASATAKA MORIYASU

Kobe Women's College of Pharmacy, Motoyamakita-machi, Higashinada-ku, Kobe, 658 (Japan) and

SHIGERU NAKAMURA, SUSUMU ISHIGURO and MASAHIRO KOMURO

Showa Denko K.K., Shibadaimon-I-chome, Minato-ku, Tokyo, 105 (Japan) (Received June 6th, 1978)

The sweet components contained in the leaves of *Stevia rebaudiana* Bertoni have recently been attracting public attention. The structures of these components have been clarified¹⁻⁴ and it has been found that stevioside (I) and rebaudioside A (II) are the main components, the latter being the sweeter of the two.

Several methods for the determination of these diterpene glycosides have been reported, but none is satisfactory⁵⁻⁷. The lack of suitable colour reagents is the main problem in the analysis of these substances.

This paper describes the determination of I and II by high-performance liquid chromatography (HPLC) utilizing a refractive index detector.

EXPERIMENTAL

Authentic samples of I and II were kindly provided by Professor O. Tanaka, Hiroshima University.

The HPLC apparatus was of our own construction. The column was a Shodex OHpak M-414 (Showa Denko, Japan; $50 \text{ cm} \times 4 \text{ mm}$ I.D.), a recently developed general-purpose hydrophilic column packed with spherical beads of rigid macroporous hydroxyl polyester gel. A Shodex RI SE 11 (Showa Denko) high-sensitivity refractive index detector was used.

The sweet components in *Stevia* leaves were extracted in the following way. Dried *Stevia* leaves were crushed in a mortar and 1.0-g of the powder was weighed out. About 0.3 g of calcium carbonate and 6 ml of water were added, and the mixture was stirred to a well blended state. After maceration for 15 h, the sweet components were extracted by heating at 50° for 4 h, and then left to cool. This was followed by addition of 18 ml of acetonitrile and filtration using a Millipore filter $(0.5 \,\mu\text{m})$ to obtain samples for analysis.

RESULTS AND DISCUSSION

The separation of I and II was attempted with various solvent systems, and a mobile phase consisting of acetonitrile-water (4:1) at a flow-rate of 0.5 ml/min yielded satisfactory results. The chromatogram of a standard sample containing I and II, with sucrose and glucose present for comparison, is shown in Fig. 1a. The detection of about $2\mu g$ of I and II was possible. It was found that a linear relationship exists between amount of sample and peak height (and also peak area) for the amounts of sample tested (up to $100 \mu g$). Hence linear calibration graphs for I and II were obtained and the reproducibility was good.

The sweet components in the extract of *Stevia* leaves were determined under the conditions described above. A typical chromatogram is shown in Fig. 1 (b).

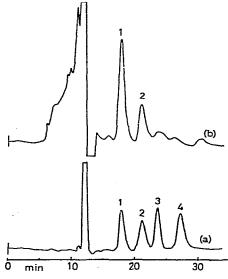


Fig. 1. Separation of stevioside and rabaudioside A. (a) Standard sample (containing $20 \mu g$ of each substance); (b) extract of *Stevia* leaves. Peaks: 1 = stevioside; 2 = rebaudioside A; 3 = glucose; 4 = sucrose.

NOTES

TABLE I

Sample	Occurrence	Stevioside (%)	Rebaudioside A (%)
a	Japan	5.4	1.5
ь	Japan	2.0	0.8
c	Japan	7.7	1.9
đ	Japan	7.4	2.3
e	Korea	2.6	1.9
f	Brazil	6.0	1.8
g	Brazil	5.5	1.6
h	Paraguay	6.1	2.9

CONTENTS OF STEVIOSIDE AND REBAUDIOSIDE A FOUND IN STEVIA LEAVES

The small peaks of compounds other than I and II may be attributable to other minor sweet components. The content of I and II in various *Stevia* samples are given in Table I.

This determination of the sweet components in *Stevia* leaves by HPLC is advantageous because the tedious pre-treatment of the sample can be omitted. Also, the sensitivity of the determination is good when the high-sensitivity refractive index detector is used.

ACKNOWLEDGEMENTS

The authors express their gratitude to Professor O. Tanaka, Hiroshima University, for his generous gift of the standard samples of stevioside and rebaudioside A.

REFERENCES

- 1 E. Mosettig, U. Berglinger, H. L. Lichiti, P. Quitt and J. A. Waters, J. Amer. Chem. Soc., 85 (1963) 2305.
- 2 E. Vis and H. G. Flecher, Jr., J. Amer. Chem. Soc., 78 (1956) 4709.
- 3 H. Kohda, R. Sakai, Y. Yamasaki and O. Tanaka, Phytochemistry, 15 (1976) 981.
- 4 I. Sakamoto, K. Yamasaki and O. Tanaka, Chem. Phram. Bull., 25 (1977) 844.
- 5 M. Mitsuhashi, S. Ueno and T. Sumita, J. Pharm. Soc. Jap., 95 (1975) 127.
- 6 N. Sakamoto, H. Handa and O. Tanaka, J. Pharm. Soc. Jap., 95 (1975) 1507.
- 7 H. Mitsuhashi, S. Ueno and O. Sumita, J. Pharm. Soc. Jap., 95 (1975) 1501.